35 research outputs found

    Instantons from Low Energy String Actions

    Get PDF
    We look for instanton solutions in a class of two scalar field gravity models, which includes the low energy string action in four dimensions. In models where the matter field has a potential with a false vacuum, we find that non-singular instantons exist as long as the Dilaton field found in string theory has a potential with a minimum, and provide an example of such an instanton. The class of singular instanton solutions are also examined, and we find that depending on the parameter values, the volume factor of the Euclidean region does not always vanish fast enough at the singularity to make the action finite.Comment: revtex 6 pages with 3 figures. Minor numerical correction mad

    Extra-dimensional cosmology with domain-wall branes

    Full text link
    We show how to define a consistent braneworld cosmology in a model in which the brane is constructed as a field-theoretic domain wall of finite thickness. The Friedmann, Robertson-Walker metric is recovered in the region of the brane, but, remarkably, with scale factor that depends on particle energy and on particle species, constituting a breakdown of the weak equivalence principle on sufficiently small scales. This unusual effect comes from the extended nature of particles confined to a domain-wall brane, and the fact that they feel an "average" of the bulk spacetime. We demonstrate how to recover the standard results of brane cosmology in the infinitely-thin brane limit, and comment on how our results have the potential to place bounds on parameters such as the thickness of domain-wall braneworlds.Comment: 23 pages; v2 has additional references and reflects journal versio

    M-theory on seven-dimensional manifolds with SU(3) structure

    Get PDF
    In this paper we study M-theory compactifications on seven-dimensional manifolds with SU(3) structure. As such manifolds naturally pick out a specific direction, the resulting effective theory can be cast into a form which is similar to type IIA compactifications to four dimensions. We derive the gravitino mass matrix in four dimensions and show that for different internal manifolds (torsion classes) the vacuum preserves either no supersymmetry, or N=2 supersymmetry or, through spontaneous partial supersymmetry breaking, N=1 supersymmetry. For the latter case we derive the effective N=1 theory and give explicit examples where all the moduli are stabilised without the need of non-perturbative effects

    Scaling in a SU(2)/Z_3 model of cosmic superstring networks

    Get PDF
    Motivated by recent developments in superstring theory in the cosmological context, we examine a field theory which contains string networks with 3-way junctions. We perform numerical simulations of this model, identify the length scales of the network that forms, and provide evidence that the length scales tend towards a scaling regime, growing in proportion to time. We infer that the presence of junctions does not in itself cause a superstring network to dominate the energy density of the early Universe.Comment: 12pp, 3 fig

    On the evolution of cosmic-superstring networks

    Full text link
    We model the behaviour of a network of interacting (p,q) strings from IIB string theory by considering a field theory containing multiple species of string, allowing us to study the effect of non-intercommuting events due to two different species crossing each other. This then has the potential for a string dominated Universe with the network becoming so tangled that it freezes. We give numerical evidence, explained by a one-scale model, that such freezing does not take place, with the network reaching a scaling limit where its density relative to the background increases with N, the number of string types.Comment: Extra references added showing constraints on cosmic superstrings, 7 pages, 7 figure

    Oscillons in dilaton-scalar theories

    Get PDF
    It is shown by both analytical methods and numerical simulations that extremely long living spherically symmetric oscillons appear in virtually any real scalar field theory coupled to a massless dilaton (DS theories). In fact such "dilatonic" oscillons are already present in the simplest non-trivial DS theory -- a free massive scalar field coupled to the dilaton. It is shown that in analogy to the previously considered cases with a single nonlinear scalar field, in DS theories there are also time periodic quasibreathers (QB) associated to small amplitude oscillons. Exploiting the QB picture the radiation law of the small amplitude dilatonic oscillons is determined analytically.Comment: extended discussion on stability, to appear in JHEP, 29 pages, 7 figure

    Inflaton Fragmentation and Oscillon Formation in Three Dimensions

    Full text link
    Analytical arguments suggest that a large class of scalar field potentials permit the existence of oscillons -- pseudo-stable, non-topological solitons -- in three spatial dimensions. In this paper we numerically explore oscillon solutions in three dimensions. We confirm the existence of these field configurations as solutions to the Klein-Gorden equation in an expanding background, and verify the predictions of Amin and Shirokoff for the characteristics of individual oscillons for their model. Further, we demonstrate that significant numbers of oscillons can be generated via fragmentation of the inflaton condensate, consistent with the analysis of Amin. These emergent oscillons can easily dominate the post-inflationary universe. Finally, both analytic and numerical results suggest that oscillons are stable on timescales longer than the post-inflationary Hubble time. Consequently, the post-inflationary universe can contain an effective matter-dominated phase, during which it is dominated by localized concentrations of scalar field matter.Comment: See http://easther.physics.yale.edu/downloads.html for numerical codes. Visualizations available at http://www.mit.edu/~mamin/oscillons.html and http://easther.physics.yale.edu/fields.html V2 Minor fixes to reference lis

    Adiabatic and isocurvature perturbation projections in multi-field inflation

    Get PDF
    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the isocurvature perturbation in the flat field space limit

    Vortex-Antivortex Pair Production in a First Order Phase Transition

    Full text link
    We carry out numerical simulation of a first order phase transition in 2+1 dimensions by randomly nucleating bubbles, and study the formation of global U(1) vortices. Bubbles grow and coalesce and vortices are formed at junctions of bubbles via standard Kibble mechanism as well as due to a new mechanism, recently proposed by us, where defect-antidefect pairs are produced due to field oscillations. We make a comparative study of the contribution of both of these mechanisms for vortex production. We find that, for high nucleation rate of bubbles, vortex-antivortex pairs produced via the new mechanism have overlapping configurations, and annihilate quickly; so only those vortices survive till late which are produced via the Kibble mechanism. However, for low nucleation rates, bubble collisions are energetic enough to lead to many well separated vortex-antivortex pairs being produced via the new mechanism. For example, in a simulation involving nucleation of 20 bubbles, a total of 14 non-overlapping vortices and antivortices formed via this new mechanism of pair creation (6 of them being very well separated), as compared to 6 vortices and antivortices produced via the Kibble mechanism. Our results show the possibility that in extremely energetic bubble collisions, such as those in the inflationary models of the early Universe, this new mechanism may drastically affect the defect production scenario.Comment: 8 pages, Revtex, 14 figures. Figs.1a,b and 5a,d are included, rest are availaible on reques

    Curvature perturbation in multi-field inflation with non-minimal coupling

    Full text link
    In this paper we discuss a multi-field model of inflation in which generally all fields are non-minimally coupled to the Ricci scalar and have non-canonical kinetic terms. The background evolution and first-order perturbations for the model are evaluated in both the Jordan and Einstein frames, and the respective curvature perturbations compared. We confirm that they are indeed not the same - unlike in the single-field case - and also that the difference is a direct consequence of the isocurvature perturbations inherent to multi-field models. This result leads us to conclude that the notion of adiabaticity is not invariant under conformal transformations. Using a two-field example we show that even if in one frame the evolution is adiabatic, meaning that the curvature perturbation is conserved on super-horizon scales, in general in the other frame isocurvature perturbations continue to source the curvature perturbation. We also find that it is possible to realise a particular model in which curvature perturbations in both frames are conserved but with each being of different magnitude. These examples highlight that the curvature perturbation itself, despite being gauge-invariant, does not correspond directly to an observable. The non-equivalence of the two curvature perturbations would also be important when considering the addition of Standard Model matter into the system.Comment: 21 pages, 2 figures, references added, typos corrected, version to appear in JCA
    corecore